Stability of exploratory multivariate data modeling in longitudinal data
نویسندگان
چکیده
منابع مشابه
modeling loss data by phase-type distribution
بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...
Exploratory Multivariate Data Analysis
Cover The words on the front and back cover pages have been ordered by letting MATLAB ® choose randomly and uniformly from a list of selected keywords. i Preface This PhD dissertation is based on a series of research projects conducted at The Royal Veterinary and Agricultural University (KVL), in the Chemometrics Research Group of Professor Lars Munck and colleagues during the period 1996-99. P...
متن کاملGraphical Methods for Exploratory Multivariate Longitudinal Data Analysis
This paper describes direct manipulation and dynamic graphics for analyzing multivariate longitudinal data. Longitudinal data measures individuals repeatedly in time, perhaps at irregular and unequal time points. There is an emphasis on studying the individual patterns as well as mean trends because we can. Static plots of individuals are messy and often unreadable because there are many overla...
متن کاملExploratory Visualization of Data Pattern Changes in Multivariate Data Streams
More and more researchers are focusing on the management, querying and pattern mining of streaming data. The visualization of streaming data, however, is still a very new topic. Streaming data is very similar to time-series data since each datapoint has a time dimension. Although the latter has been well studied in the area of information visualization, a key characteristic of streaming data, u...
متن کاملConditional Dependence in Longitudinal Data Analysis
Mixed models are widely used to analyze longitudinal data. In their conventional formulation as linear mixed models (LMMs) and generalized LMMs (GLMMs), a commonly indispensable assumption in settings involving longitudinal non-Gaussian data is that the longitudinal observations from subjects are conditionally independent, given subject-specific random effects. Although conventional Gaussian...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Genetics
سال: 2003
ISSN: 1471-2156
DOI: 10.1186/1471-2156-4-s1-s38